オンデマンドバスシミュレーション

http://www.nakl.t.u-tokyo.ac.jp/odb/

東京大学大学院 新領域創成科学研究科 人間環境学専攻

教授 大和 裕幸

助教神方和夫

特任助教 杉本 千佳

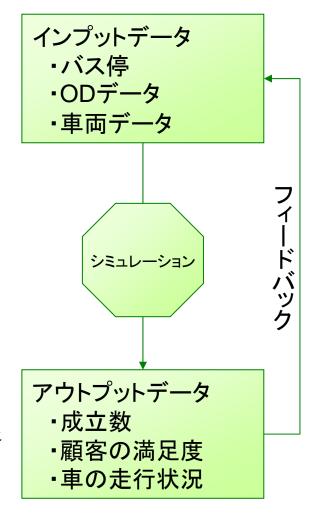
博課 坪内 孝太

研究員 本 多 建

研究員 松野 智史

目次

- ●シミュレーションについて
- ●シミュレーションの結果
- ●シミュレーションのまとめ


設計工学研究室

シミュレーションについて

シミュレーション実験について

- バス停データを設定する。
 - ●どの地点をODに設定できるようにするか?
- ○Dデータを作成する。
 - ●何時に移動するのか?
 - ●どこからどこまで移動するのか?
 - ●何人が移動するのか?
- シミュレーションの初期条件を決める。
 - •何人乗りの車両を何台使用するか? (最大値)
- シミュレーション実験を繰り返す。
- シミュレーション結果
 - ●この地域でこのODで動かすには何人乗りを何 台必要。
- シミュレーション詳細結果の分析
 - ●時間帯によって投入する台数は制限した方が良い。
 - ●少し、ODデータを変えてみるなど。

シミュレーションとは?

●仮想的環境における実走試験

●条件の整った環境において、コンピュータの上に乗客およびバスを発生させ、バスを走らせる実験

●仮想的環境=どのように現実と異なるか?

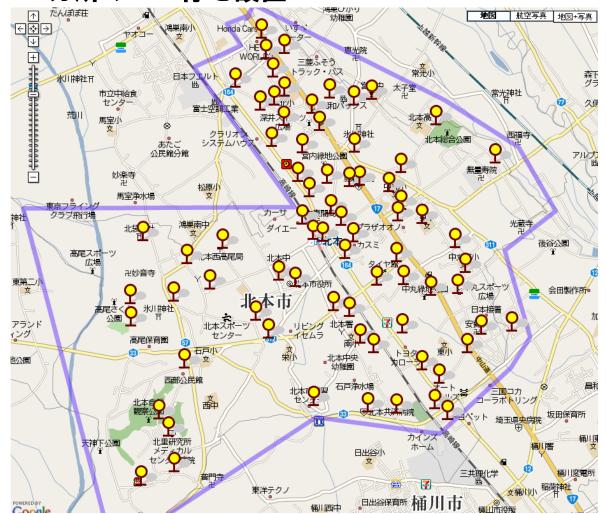
- ●遅延の無い移動
 - カーナビゲーションシステムによって求められる移動時間によって 遅延や事故なく移動する。(一方通行などは考慮)
- ●理想通りに乗客が行動
 -)待ち合わせ時間に遅れない。予約キャンセルがない。
 - ▶乗り降りに時間をかけない。

●シミュレーション実験の目的

●仮想空間でバスを実際に走らせてみることで、バスが何台くらい 必要で、その際どのようなサービスが期待できるかを確認する。

シミュレーションの前提

●現行の路線バス利用人数から設定


●1日200人程度の需要 (8時~18時まで10時間)

※需要を200人、300人、400人、500人と変化させる。

シミュレーションの前提

● 域内に74カ所のバス停を設置

バス停の一覧

番号	名前	番号	名前	番号	名前
100	桜国屋	125	東中学校	150	北本共済病院
101	北小	126	ワコーレ北本	151	ふれあいの家
102	ヘイワールド	127	健康増進センター	152	福音診療所
103	スカイハイツ	128	北本県土整備事務所	153	山田医院
104	桃泉園	129	東間浅間神社	154	北本郵便局
105	深井マミーマート	130	よしだ整形外科内科	155	ダイエー
106	サンセレクト北本	131	井上眼科医院	156	北本駅西口
107	深井保育所	132	カスミストア	157	北本市役所
108	東間8丁目81付近	133	コープ北本	158	北本中央クリニック
109	安里医院	134	東部公民館	159	コミュニティセンター
110	サンマンション	135	北本駅東口	160	学習センター
111	深井スポーツ広場	136	東保育所	161	真福寺
112	北部公民館	137	中丸氷川神社	162	西高尾郵便局
113	昭和パックス	138	中丸緑地公園	163	総合福祉センター
114	深井8丁目304付近	139	中丸公民館	164	谷足会館
115	アトレ北本	140	中丸スポーツ広場	165	北袋神社
116	宮内中学校	141	安養院	166	高尾さくら公園
117	ふじ幼稚園	142	鈴木医院	167	野外活動センター
118	勤労福祉センター	143	北本共立診療所	168	氷川神社入口
119	藤倉病院	144	ロヂャース	169	西部公民館
120	体育センター	145	高橋皮膚科医院	170	埼玉県自然学習センター
121	宮内スポーツ広場	146	南部公民館	171	北里メディカルセンター病院
122	中丸小学校	147	マリオン北本	172	子供公園
123	本藤整形外科	148	天地クリニック	173	東光寺入口
124	 大久保医院	149	南団地		

8

シミュレーションの前提

●発生させた需要の様子(ビデオで確認)

- ●北本市に入力していただいた需要をベースに、ランダムな需要を加えて発生させている。
- ●上記アニメーションで簡単な事例を確認。

●用いる車両について

- ●8人乗りジャンボタクシーと、4人乗りセダンタクシーとの組合せで運行を行う。
- ●ジャンボタクシーは3台、セダンタクシーは4台が利用 可能である。

シミュレーションの評価について

●成立率(%)

●全予約に対する、±20分ずらして成立した予約の数

●自家用車移動時間(分)

●オンデマンドバスで運んだ乗客を仮に自家用車で運ぶ とした場合の移動時間

●オンデマンドバス移動時間(分)

オンデマンドバスが移動していた時間

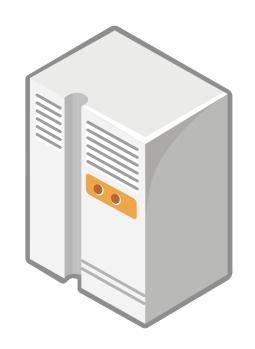
■顧客不満足度(分)

●希望時刻をどの程度ずらしたかを表す指標

成立率

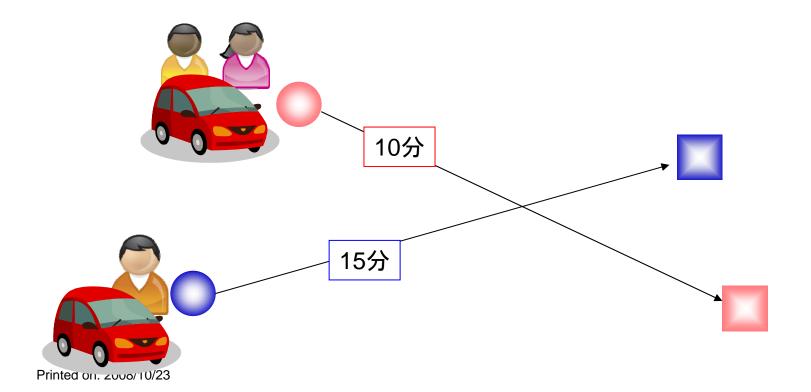
●予約の成立

●±20分以内に乗れるバスが見つかった場合には成立、 見つからなかった場合には不成立とする。

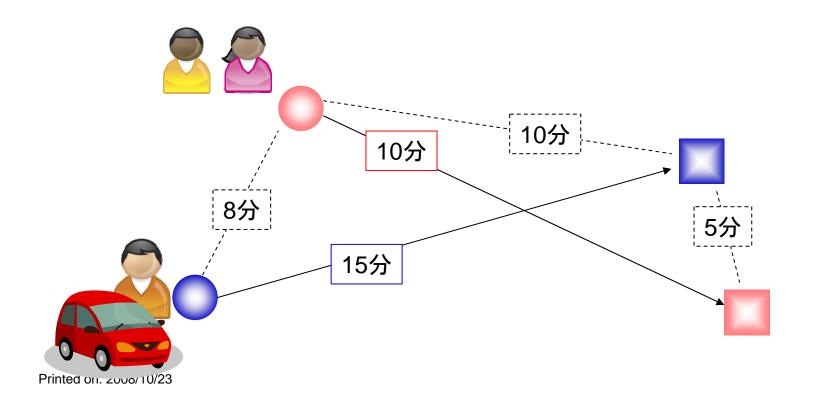

9時に駅に着きたい 9時に駅に着くことができる

9時に駅に着きたい

9時は無理ですが、8時50分に到着する便なる予約できる。


9時に駅に着きたい

9時は無理ですが、9時30分に到着する便なら予約できる。


自家用車移動時間

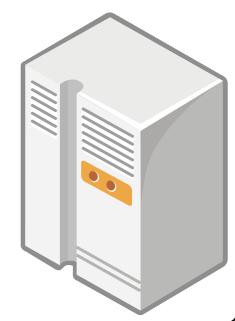
- ●自家用車で送り迎えをして、移動する際の移動時間。
 - ●下の例では、計15分× 2+10分× 2=50分

オンデマンドバス移動時間

- ●自家用車で送り迎えをして、移動する際の移動時間。
 - ●下の例では、8分+10分+5分=23分

顧客の不満足度

●成立した予約の中で顧客の希望からずれた時間の平均値



9時に駅に着きたい

→ 9時に駅に着くことができる

9時に駅に着きたい

9時は無理ですが、8時50分に到着する便なら予約できる。

シミュレーションにより求めること

●各ケースで何台ずつが適切か?

- ●1)成立率は70%~85%の間に収めたい。
 -) 低すぎる:サービスとして不評
 - 》高すぎる:サービスとして非効率(タクシーとの差別化が曖昧)
- •2) 出来る限り、数少ない車両で運行したい。
 - 運行コストダウンのため。
- ●3)出来る限り、小さな車両で運行したい。
 - 車両数が同じであれば、運行コストはほとんど変わらないが、車両のサイズにより環境負荷が大きく変わるため。
- ●したがって、「出来る限り数少なく、かつ小さな車両で 運行を行いたい」時、何人乗りの車両を何台準備するの がこの地域にふさわしいかを求めることが問題になる。

設計工学研究室

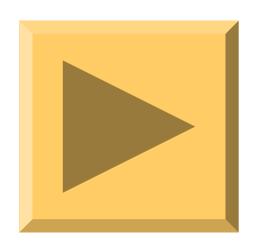
シミュレーションの結果

シミュレーションの結果

	4人 乗り	8人乗り	成立率	CAR移 動時間	ODB移 動時間	ODB 効率	顧客不満足度
200人	0台	3台	57.7%	3004	1489	49.6%	8.1分
200人	1台	3台	71.5%	4016	1918	47.8%	8.0分
300人	1台	3台	68.3%	5112	2500	48.9%	8.9分
300人	2台	3台	80.0%	6890	3145	45.6%	6.3分
300人	3台	3台	84.4%	7178	3438	47.9%	4.0分
300人	3台	3台	85.2%	7608	3413	44.9%	5.9分
300人	4台	2台	87.4%	6946	3312	47.7%	4.0分
300人	4台	3台	91.7%	8186	3814	46.6%	3.3分
400人	4台	3台	64.6%	6628	3067	46.3%	7.7分
500人	4台	3台	60.7%	8038	3599	44.8%	8.6分

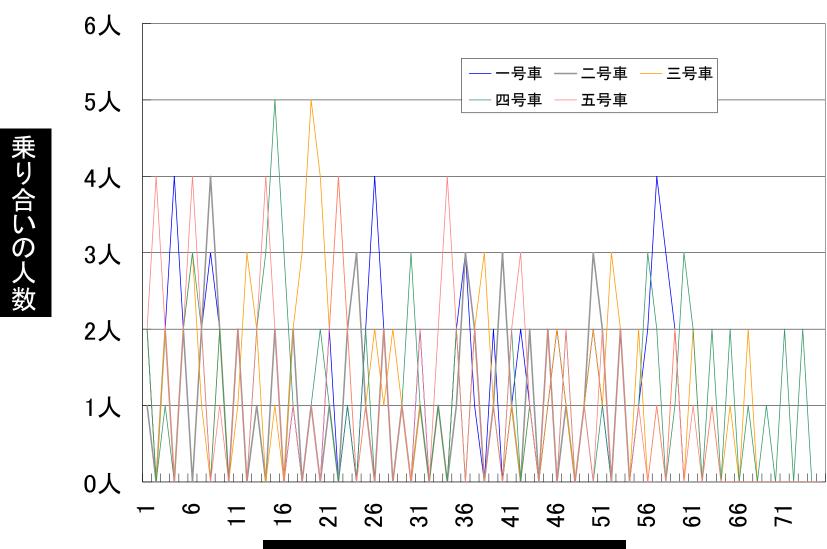
シミュレーションの結果

		4人 乗り	8人 乗り	成立率	CAR移 動時間	ODB移 動時間	ODB 効率	顧客不 満足度
低	200人	0台	3台	57.7%	3004	1489	49.6%	8.1分
2000	200人	1台	3台	71.5%	4016	1918	47.8%	8.0分
低	300人	1台	3台	68.3%	5112	2500	48.9%	8.9分
	300人	2台	3台	80.0%	6890	3145	45.6%	6.3分
	300人	3台	3台	84.4%	7178	3438	47.9%	4.0分
高	300人	3台	3台	85.2%	7608	3413	44.9%	5.9分
	300人	4台	2台	87.4%	6946	3312	47.7%	4.0分
	300人	4台	3台	91.7%	8186	3814	46.6%	3.3分
低	400人	4台	3台	64.6%	6628	3067	46.3%	7.7分
	500人	4台	3台	60.7%	8038	3599	44.8%	8.6分


シミュレーションの結果(ビデオ)

●最も効率のよい結果のアニメーション

•4人乗り:2台


●8人乗り:3台

●需要数:300名/目

乗り合いはどの程度起こっているのか?

(300人:4人乗り2台、8人乗り3台の一ケース)

設計工学研究室

シミュレーションのまとめ

シミュレーションのまとめ

●8人乗り×3台、4人乗り×4台という制約条件 のもと、需要数を変動させたシミュレーション を行った。

200人	8人乗り3台と4人乗り1台が適当
300人	8人乗り3台と4人乗り2台が適当
400人	本制約下で良いサービスを提供できない。
500人	本制約下で良いサービスを提供できない。

●運行状況

- ●成立率や顧客不満足度
- ●乗り合いも適宜生じ、非常に効率的な運行ができている。

シミュレーションケースの経済性評価(黄色部分が効率の良い運行パターン)

	4人 乗り	8人乗り	成立 率	年間乗車 人数	年間車両貸 切費用	年間システ ム費用	運賃収入	必要補助金
200人	0台	3台	57.7%	42,121人	¥27,375,000	¥1,152,000	¥12,636,300	¥15,890,700
200人	1台	3台	71.5%	52,195人	¥36,500,000	¥1,296,000	¥15,658,500	¥22,137,500
300人	1台	3台	68.3%	74,789人	¥36,500,000	¥1,776,000	¥22,436,550	¥15,839,450
300人	2台	3台	80.0%	87,600人	¥45,625,000	¥1,920,000	¥26,280,000	¥21,265,000
300人	3台	3台	84.4%	92,418人	¥54,750,000	¥2,064,000	¥27,725,400	¥29,088,600
300人	3台	3台	85.2%	93,294人	¥54,750,000	¥2,064,000	¥27,988,200	¥28,825,800
300人	4台	2台	87.4%	95,703人	¥54,750,000	¥2,184,000	¥28,710,900	¥28,223,100
300人	4台	3台	91.7%	100,412人	¥63,875,000	¥2,328,000	¥30,123,450	¥36,079,550
400人	4台	3台	64.6%	94,316人	¥63,875,000	¥2,328,000	¥28,294,800	¥37,908,200
500人	4台	3台	60.7%	110,778人	¥63,875,000	¥2,328,000	¥33,233,250	¥32,969,750

(シミュレーションの前提)

[※]車両は1時間・台あたり、2500円とし、運賃は一律300円とした。

[※]必要補助金は(車両費+システム費)から運賃収入を差し引いた。広告収入などや諸経費は考慮していない。

シミュレーションの結論

- ●北本市の運行を想定したシミュレーションを行い、その効果を検証した。
 - ●8人乗り車両を3台、4人乗り車両を4台という制約条件では400人、500人規模の需要に対応することはできない。
 - ●8人乗り車両を3台、4人乗り車両を2台で、300人規模の需要に対応するのが効率が良い。
 - ●運賃300円、台時間あたり2500円の車両費を想定する と、理想的なケースで約21,000,000円が必要になる。

●シミュレーションを現実に

●シミュレーションの結果を現実のものとするには、モビリティ・マネジメントのような利用側とのコミュニケーションにより新しい交通機関を盛り上げていくことが重要。

ご清聴ありがとうございました。

